Если это, например, станция метро,
Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.
Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.
Формула Шеннона: I = – ( p1 log2 p1 + p2 log2 p2 + . . . + pN log2 pN ), где pi — вероятность того, что именно i-е сообщение выделено в наборе из N сообщений. |
Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями.
В качестве единицы информации условились принять один бит (англ. bit — binary, digit — двоичная цифра).
Бит в теории информации — количество информации, необходимое для различения двух равновероятных сообщений. А в вычислительной технике битом называют наименьшую "порцию" памяти, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд. |
Широко используются также ещё более крупные производные единицы информации:
- 1 Килобайт (Кбайт) = 1024 байт = 210 байт,
- 1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт,
- 1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.
- 1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт,
- 1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.
В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:
За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит) единица информации.